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Abstract

The Space Shuttle Main Engine (SSME) is a very complex power plant and

plays a crucial role in Shuttle missions. To evaluate SSME performanace

1200 hot-fire ground tests have been conducted, varying in duration from

0 to 500 secs. During the test about 500 sensors are sampled every 20ms

to measure the various parameters. The sensors are generally bounded by

'red-lines' so that an excursion beyond the red-line could lead to

premature shutdown by the operator. In 27 tests, guided by the red-lines,

it was not possible to effect an orderly premature shutdown. These tests

became major incidents where serious damage to the SSME and the test

stand resulted. In this study we have investigated the application of

pattern recognition techniques to detect SSME performance trends that

lead to major incidents. Based on the sensor data a set of (n) features is

defined. At any time, during the test, the state of the SSME is given by a

point in the n-dimensional feature-space. The entire history of a given

test can now be represented as a trajectory in the n-dimensional feature

space. Portions of the 'normal' trajectories and the failed test

trajectories would lie in different regions of the n-dimensional feature

space. The feature space can now be partitioned into regions of

normal-tests and failed tests. In this manner it is possible to examine the

trajectory of a test in progress and predict if it "is heading into the

'normal-region' or the 'failure-region' of the n-dimensional feature space.

In this study we have developed techniques to extract features from

ground test data, as supplied by Rocketdyne, and develop feature space

trajectories for the tests. The initial results as presented here, look very

promising.
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Introduction ORIGINAL PAGE IS

OF POOR QUALITY

The Space Shuttle Main Engine (SSME) based on Hydrogen-Oxygen

combustion is a very complex power plant employing numerous pumps,
valves and ducts as shown in Fig.1. During a ground test about 500 sensors
are used to monitor the state of SSME. Some of these sensors are used for

the close loop control of SSME and are connected to a Computer System

'Engine Controller' as shown in Fig.2.
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There are 3 different data acquisition systems used to collect the sensor

data (1,2), namely,

-- Command and Data Simulator (CADS)

-- Facility Recording (FR), and

-- Analog High Frequency Recording (AHFR)

In Fig. 3, the salient points of these systems is shown. The engine

controller uses 16 bit computations on 12-bit data words to perform close

loop operation of the SSME. For the SSME Anomaly and Failure Detection

(SAFD) analysis, as reported in (2), the CADS and FR data provide the bulk

of the input.

In all about 1200 hot fire tests have been conducted on the SSME. In 27

tests the SSME went out of control and serious damage to the engine and

the teststand resulted. A summary of some of the salient points of the

ground tests is given in Table 1.

Considering that the replacement cost of an engine is ~$50M, it is highly

desirable to develop some technique for detecting failure trends which

would allow an orderly shutdown of the SSME and thereby preventing a

major incident (3). In (2) and (3) various techniques for failure detection

have been suggested including the following,

-- Generalized Likelihood Ratio (GLR)

-- Generalized Likelihood Test (GLT)

-- Voting

-- Confidence Region Tests

-- Kalman Filters

-- Parameter Estimation

-- Jump Processes

-- Pattern Recognition.

The success of a technique will be determined by;

-- detecting the fault fast enough to allow an orderly shutdown

-- identifying the technical nature of the fault.
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Fig. 3 SSME Data Acquisition Sys_m
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TABLE 1. GROUND TEST SUMMARY

m -1200 HOT- FIRES

- -27 MAJOR INCIDENTS

- -TEST DURATION 0-500 SEC.

- -300-500 SENSORS MONITORED

--SAMPLING RATE 50 Hz.

- -DATA WORD 12 bits

--DATA TRANSFER RATE 0.5-1Mhz

- -DATA VOLUME 0.1 - 1Gbits
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......... ,.,,,., ,.,, ,.=, ,u, , ,J_,, uu_[ Be aescnoea by the 'weighted truth-table'

in Fig. 4 which shows the probability W for various actions.

SAFD
Decision

continue

normal 1

failure

shut-
down

Ideally, W1=W4=1 & W2=W3=0

Fig. 4 SAFD performance matrix.
Note that W2 being the probability of a false alarm should be zero,

however, a small value ,say 1%, may be acceptable. On the other hand W3

being the probability of a miss should indeed be zero, just as W4 should be

1. Various alternatives have been considered for implementing such a

SAFD. We shall consider the use of Pattern Recognition (PR) techniques for

SAFD. It should also be pointed out that much of the data processing in PR,

as described below, can also be used for the other vital activities

envisaged for the future systems, namely, real-time control, health

assessment amd condition monitoring (4,5).
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Pattern Recognition (PR)

The fundamental premise for applying PR techniques is the observation

that when systems fail due to internal causes there are always some

warning signs that preceed the event. Furthermore, the progression of a

system from normal operating mode to anomalous (failure) mode does not

happen at random but follows a pattern which can be analysed and

explained. The object of PR technique, described here, is to identify the

patterns that have led to failures and use this knowledge to look for

warning signs in future tests and predict failures well in advance of their

occurence.

The current practice is based on red-lining the sensor outputs. The

red-lining of n-sensors can be easily explained in terms of a polyhedron in

n-dimensions as shown in Figs. 5(a,b,c). Each sensor is assigned a lower-

and an upper-bound value for 'normal' operation and these define the two

'red-lines' for that sensor. For a 3-sensor case the state of the system, at

a given time, can uniquely be defined by a point in the rectangular

prismatic region of the $1-S2-$3 Space (S-Space), Fig. 5c. The collection

of these state-points at successive times would define a trajectory in the

S-Space. All the possible normal runs of the system would then be given by

trajectories that lie entirely within the 'red-lined' rectangular prism as

shown in Fig. 6. In principle, any trajectory that tends to approach a

boundary and exit to the outside region is an indication of an imminent
failure.

One can learn to detect the failure trends by examining the data of the 27

tests that resulted in failure and compare it with the normal test data. It

is quite possible that the failure trajectories will reveal their different

character (as compared to normal trajectories) even before coming close

to the red-line polyhedron boundary as shown in Fig. 7.
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Fig. 5 Multi-Sensor Red-Lining
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Fig. 6 System Trajectories in
Sensor Space
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Failure Mode Normal Mode

Fig. 7 Failure & Normal Mode Trajectories
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There are two points that have to be considered in this context, namely,

1. The straight forward fixed red-lines for a sensor are adequate only for

very special cases where no coupling among the sensors exists, i. e. the

red-line for a given sensor is independent of the values of all the other

parameters as measured by the rest of the sensors. Let r k be the red-line

for the kth sensor, then

rk = c k, where c's are constants

The software red-lines can be defined by replaing c's by functions fk so

that,

rk=fk(S1,S2,... Sn), where Sk is the kth sensor reading

In real-time this implies that as the test is progressing the readings S k

are used to calculate the various rk's through fk's. This can become not

only computationally quite cumbersome but the explicit form of fk itself

has to be known perhaps from a simulation model of the system. In

principle, it is simple to build the simulation model in a modular manner

(6), however, the ad hoc nature of such models leads to different control

and real-time simulation models. By such models it is quite possible to

determine most of the fk's, however, some crucial gaps may exist in this

knowledge since not all the failure mechanisms are well understood.

2. Even if the fk's are known and the soft red-lines can be determined,

there is yet another serious problem. In principle all red-lines, soft or

otherwise, are based on a single time frame of the system without

considering how the system got to the state represented by the time

frame. Questions of the type; has the system reached its present state

through a transient, slow drift, excessive noise or under a close-loop

command etc., are not considered by red-line methods. The method

proposed here considers the entire system trajectory and compares it with

other trajectories to detect failure prone trajectories.

The PR technique we propose to employ here has two important steps,

-- extension of the sensor-space into Feature Space

--Segmentation of the feature-space into normal- and failure-regions
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Feature Space

The sensor space discussed above has two major drawbacks, namely,

-- For a truly multi-sensor system such as SSME the total amount of data

is too large (about 100 Mbits) and can become too unwieldy for real-time

processing.

On the other hand most of the data is of routine nature and a tremendous

amount of data compression can be achieved by isolating and analysing

only the deviations from the norm or the steady state. The norms can be

defined as those values which can be calculated or predicted (assuming

normal SSME operation) from a few key parameters e. g. power level, MCC

pressure, throttle position etc. In the simplest case, only the deviations in

sensor values, as compared to a moving average defined over a certain

interval, are to be used for further analysis. This may even include

deviations caused by closed- or open-loop control commands as may

happen during throttling.

-- The sensor space, as based only on the sensor values, may not highlight

the features important for SAFD.

This is based on the fact that the raw sensor readings, along with their

red-lines, may themselves be not good indicators of impending failure.

Further processing is often required to calculate features which are

directly related to the failure modes. In Fig. 8 we show some of the

features that can be defined for a given sensor. Starting with the raw

value one can calculate first an average over a certain interval and then

the deviation from it. From these one can also calculate the signal to noise

ratio SIN which could be another feature. To detect drifts one can also

calculate the local gradients as another feature. Similarly Fourier

Transform of the signal (or the deviation), over a given time window, can

be another feature, as shown in Fig. 8. One can also define 'compound'

features involving data from more than one sensor. Thus, if needed, the

net thermal flux, which may not be measured by a single sensor, can be

calculated from the presure, flow velocity and temperature as measured

by sensors in the MCC and it can be used as a feature for failure detection.
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Based on the above discussion, the sensor space is replaced by a

feature-time space, where a feature is defined as the deviation from the

norm or steady-state as calculated from some key parameters or by

averaging over a specified interval. The state of SSME, at any given time

will thus be represented by a state point in the feature space. In Fig. 9 a

normal SSME run is shown in a two-feature space. In a normal run, all the

state points cluster around the time axis as shown, since no large
deviations are encountered.

Value Devatn Grad
v v'=v-<v> v'/dt FT(v')

Fig. 8 Sensor Values & Features

F2

muO • • am • aa awu • • • umuOuO0 • •

F/ Time

Fig. 9 Feature Space Representation of
Normal SSME Test
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Segmentation

Segmentation is the process of partitioning the feature space into
clusters that can be identified with definite states of the system e. g.

pre-failure or normal. An idealised illustration of this is shown in Fig.10

where the entire feature space has been projected along the time axis. All

the points representing the normal runs should lie in a small region,

cluster 1, around the origin. During normal runs there are large deviations

caused by genuine excursions such as throttling etc. Such states of the

system might show up as another region, cluster 2. It is anticipated that
the deviations due to the failure modes will be of different nature and

hopefully form another distinct region, cluster 3. An another form of the

same situation is depicted in Fig.11 where an entire run is represented by

a trajectory. A steady run trajectory would then lie entirely within

cluster 1 whereas a controlled excursion in a run might cause the

trajectory to migrate to cluste 2, but eventually return to cluster 1 after

the steady state has been reached.

In practice, the situation may not be quite so clean cut, the clusters may

not have so well defined boundaries and they may overlap. A number of

powerful statistical techniques is available to locate cluster boundaries

in such cases It is also possible to assign to each state point, the

probability of membership to a given cluster. One can also define a

distance metric in the feature space to group points in clusters. In Table 2.

(7) some of the commonly employed distance measures and the associated

error bounds are shown.
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Fig. 10 Segmentation of the Feature Space
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Fig. 11Trajectories across the Clusters
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Table 2. Distance Measure and Error Bounds

Name Expremsiun
---1 i

Kela¢lonships

Baycs =rror probability

I) Equivocation or Shannon
enu'ccy

2) A_,_'ap condiliona| quad-
ratic entropy [Vajda (1970)1

3) kycsian dw [Devijver
(1974)]

4) Minko_,ki measures of non-
unU'ornuty ['Toussaim (! 973)]

5) Blmttacharp/a bound [see
gaULam (1967)l

6) Chernoff bound [see Kailath
(1967)1

7) Kolmolorov variational
di_ulmC¢ [see KaJlath (1967)]

8) Genendized Kolmogorov
distance {Devijver ('i974),

and Fu (1973)]

9) A family of apl2roximatin$
fuacuons {I1o (1972)J

10) The Matusitl distance (see
Kailath (1967)1

P. - I - f tnax [P,p(XIw,)] d.z
d$. I

H(NI"_) " E{--i_ I P'(W'IZ) 10' P'(WI' "t')]

Jl(g'_lX)" ,E{_ ,+O,(Wt'X_'! -- P,(wr,Jr)J}

'+.++-" I

b(_IX) - c"{[P.(w. Ix)" P,(.._t._)] "l}

C(PatX: s) - E{[P,(.*, Ix)' "' - P,(w21x_}

gCniX') = ½ECIP,(_,.[a') - P,(wzl.r)l}

J.(_IX) " E{IP.(w, lx) - P,(w, iz)l'}, O<s<_

Q.(nlX) " ½ - ][E{[P.(wllz)

- p,(w=lx))", o'"". ,}]

_, r[ dJr] Ijs',, LJs (p(ziw,)- p(zl,,,,))'

C/w Bowldl

K! - B(_IX)]

< ,% < [] - #mlx)J

m-I
- k(nlX) - R,.,, - -- - Mo(nlX);

P. < "'" < Rsm < "" < R._ < R,..

[see Cover and Heat (1967) and D_,i_r (1974)l

Two C/,_ llomde

.,_m,tqo_,,',.o,:+..s _2 :_ :.<,,,,.,-,);
Iml j m0,+, I

t(t - (s,(nl,r)P"} < P, < t(! - .r,(nlX_}.
fors> !;

upper bound equals (I - B(QfX)], when a ,,, 2;

Q.o. < Q.; Qo - I - a' (.qlX);

7 liVeS the same bound as b(gll,lf);

two-clau bound relations:

P. < Q.(NIX) S Qe(I_IX) S ½H(nlX') S b(_lJO

[_ lto (19"/2) and H¢llnum and Raviv (!970)J

Notation: f_ 1 (w,. i m 1,2. • • ca: 2 < m < :_)---a set of pattern classes; P_ is an Q priori probability oi" class w_; X is • n dimensional vector
random variable; S. is a sample space of X; p(Xiw,) is a conditional probability density function; P.(w, IX) is a posterior probability
o( cJa.U w_ conditioned on X;/(X) I. _','., P, pgx:w,).--th¢ mtxtune dismbution; --¢is an expectation over S. with resp_t tO/(X);
Rsw is an m _ infinite sample c_earest-nc|i_eor risk; R_,,,, is a k near_-neil_bor rug.

the steps employed in the above technique are;

-- definition of the features and construction of the feature space

-- plotting of ground test data (of both normal and failure tests)

trajectories in the feature space

-- segmentation of trajectories into failure and normalruns.

Implementation of these steps in practice is discussed nelow.

as
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Results and Conclusions

the data from a run is stored on a number of magnetic tapes . the data for

a short interval (10-100 sec.) and from a few imortant ssrs is combined

into a single tape file. This tape file is read into a disk file which can be

accessed by application programs. Fig. 12 shows the header, or the

Run-Log, of the disk data file. This data, as can be seen from the first line,

is for the time period 320 to 392 secs. of the run #901-364 which

resulted in a failure. It also shows the ssr PID#, the engineering unit used

and the SSME component mnemonic.

90t8364R:1t
367 RP
940 GP

395 GP
410 RP
480 GP

459 AP
764 RM
854 GP
858 GP

878 GP
879 IC
883 DP

320._0000 392.15008
HCCH.G. IN3 PR
HPFPCLNTLN PR

MCCOX IN3 PR
FPB PC NFD
OPB PC

HPFP DS PR NFD

HPFP SPD NFD

FAC OX FH DS PR

ENG OX IN PR I

HX INT PR
HX INT T

HX VENT DP

Fig. 12 Data File Header
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An interactive, menu driven program has been written to process the data

and extract the features. In Fig. 13 a beginning MENU of the program is

shown. Various types of operations are available by choosing the

appropriate code. these operations include both recursuve and

non-recursive filters, data compression, Logical Operations, FFT,

Look-Up-Tables etc.

3 395 GP HCCOX IN3 PR
4 41g RP FPB PC NFD
5 48g GP OPBPC
G 459 tiP HPFP DS PR NFD
? ?64 RM HPFP SPD NFD
B 854 GP FfiC OX FH DS PR
9 858 GP ENGOX IN PR t

tg BTB GP HX INT PR

tt 879 IC HX ]NT T
12 883 DP HX VENT DP

" " TYPE SEQI'S OF COMPONENTS, END HITH g

i

g

TYPE ! OF DRiftPOINTS TO REfiD(LT.3000). O=EXIT

3308
! ! ! ! CHOOSE OPTION BY TYPING I t ! !

DfiTfi COMPRESS* = , = = e =t
NON-RECFLTR e = = = = ¢ =2
RECURSIVEFILTER = , e , =3

NRM-OPRNS= = t = = ¢ = = =4
FFT * * * = = = = = = = = =S
EXIT = : : = : = =0

Fig. 13 Operations MENU
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The first step is to read the raw data for a ssr by choosing the appropriate

PID#. In Fig. 14 the data for PID#367, for the entire duration of 320 to 392
seconds is shown

3655

_££ H. 6. INJ PR R364 PID367

1-1(3----02-1

3658

3645

3648

3635

3638

3625

3628

3615

320

FILES: I=FORBI) I. DRT;486

Fig. 14. MOO H. G. INJ PR, PID #367, RUN 901-364

From the above figure it is clear that the data has some structure in the

form of some distinct features, however, the noise level is fairly high to

mask them. the first step we have taken is to reduce the 'observational

sampling rate' through moving average. This is done in the following three

steps;
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1. Select a window size N -- 0, 1, 2 ....

Let M = 2N + 1

2. Form signal averages .8._k from the raw signal S i

.,,S..k = _ Si/M;

where k -- N+I, 2N+1, 3N+1, .2rN+l, . and

i -- k-N, k-N+1, .k+N

3. Replace the original signal S i by S k. the sampling rate in the new

signal, S k , is reduced by a factor of N.

In Fig. 15 the sampling rate of the data in Fig. 14 has been reduced by N,,9,

or compressed by a factor of 9. the program allows an interactive choice

of N. the data in Fig. 15 still seems to have some noise which can be

removed by various filtering techniques. As an illustration Fig. 16 shows

the result of applying a non-recursive to the data of Fig. 15.

the data in Fig. 16 seems to have two distinct features, namely, a

predominant frequency and a 'drifting background'. To separate these two

components one can determine local averages over an interval larger than

the hi-freq, wavelength as shown by the background line in Fig. 17. from

this one can determine the zero-crossing points. A smooth curve can be

fitted to these points to determine the background, as shown in Fig. 18.

the background level, as found in Fig. 18 can now be subtracted from Fig.16

to give the hi-freq, component of the signal, as shown in Fig. 19. This

signal can further be 'smoothed' to yield a 'cleaner' hi-freq, signal, as

shown in Fig. 20.
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Fig. 15 Reduced Sampling Rate Data, PID#367

R365 3.3K/10

1-10-----'02-i

3658-

3645-

3648-

3635-

3638-

3625-

3620-

320

I

I I, ,11
I

338 34(3

 Ji,!'till II 'l'''I

I
I I I I I

358 368 378 388 390

FILES: I=FOR881. DRT=495
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Fig. 16 High-Pass Filtered Data, PID#367

3.644-

R364 3.3K/18 RECF-4

I-IG_---_)3-1

3642-

364

3638

3636

3634

3632

3630

3628

3626

3624

328 338

o

340 35@ 368 378 388 398

FILES: 1=FOROO1.DAI;495
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Fig. 17 Zero Crossing Points, PID#367

3658

C 1 - 3K- 10C01'1P-4REC

1 -i 0---,92-1 X-------_ .3 - !

3645

3648

3635

3638

3625 I!

3620

320

I

IV I '

i

3 O ;48

Y

350 ::6(_ 370 3:30

FILES: 1=FOROO1. D_T;qS3
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Fig. 18 Background Trend, PID#367

3644-

3642-

3640-

363

363

363

3632-

3638-

3

3

362

R364 3.3K/18 RECF-4+RECF-I8

I-I_4-I

//

I
_J

I ! I

328 338 348

l ! ! i

350 368 370 380 390

FILES: I=FORBBI.DAT:495
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Fig. 19 High Frequency Data, PID#367

R364 3.3K/18 REC4-REC18

I-IG--_EbS-I

328 339 349 358 368 3T@ 389 398

FILES: I=FOR881 .DRT:495
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Fig. 20 Smoothed Hi-Freq Data, PID#367

R364 3.3K/10 R3[R4-(R4÷R18)]

1-10---_-_6-1

I 88

8 75

8 5O

0 25 ' /

-8 25

-8 58

-O 75

-I O0 I

-! 25

320

i i

/i/
i ,

ii

! i

330

i i

340 350 360 370 380

i

-,q

FILES: I=FOROOI.DAT:497
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the original signal of Fig. 14 can now be said to have two distinct features

as represented by Figs. 18 & 20. the former is a slow drift with with

plateaus, whereas the latter is a high frequency jitter, which, if needed,

can be Fourier analysed. This drift and the high frequency can now be

taken as features for representation in the feature space as discussed

earlier.

the above steps can now be repeated for the other sensors, the

accumulation of all such ssrs and their features can be put in a single

time-feature file to construct trajectories, the present computer

facilities, with the limited memory allocation and the lack of on-line

graphics, did not allow such implementation. A demonstration of this,

however, was realised off-line at UAH facility and presented as a video

film at MSFC.

From this study, the design of a comprehensive system to analyse the

SSME ground test data has been made. the system should consist of;

1. A double density (6250/1600 bpi) tape drive interfaced to the host
VAX/VMS environment.

2. An on-lne RGB graphics display.

3. At least 20M disk memory.

4. A graphics kernel with hooks to application environment.

5. A two tiered version of software for interactive development and macro

oriented operation.
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Conclusions

-- A feature space description of the SSME ground test data has been

realised.

-- An interactive program has been written to extract features from the

ground test data.

-- Techniques of pattern recognition have been identified to measure the

deviations from the normal runs

-- A design of a more comprehensive program has been made to;

A. Survey a large number of normal runs (about 50), and

B. Survey all the failed runs (27) and compare them with the above.

-- Considering that an overall comprehensive review of neither the normal

nor the failed runs exists it is highly recommended that an analysis

environment of the type discussed above, be implemented.
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